linearly.ai

Lectures

Lecture00: How Do Machines Learn?

Lecture00: How Do Machines Learn?

Lecture01: Fundamentals

Lecture01: Fundamentals

Lecture02: Matrices & Transformations

Lecture02: Matrices & Transformations

Lecture03: Matrices & Views & Numpy

Lecture03: Matrices & Views & Numpy

Lecture04: Elimination, Inverse Matrices & Permutations

Lecture04: Elimination, Inverse Matrices & Permutations

Lecture05: Unique Matrix Multiplication Methods

Lecture05: Unique Matrix Multiplication Methods

Lecture06: CR & LU Decompositions

Lecture06: CR & LU Decompositions

Lecture07: Vector Spaces Intro

Lecture07: Vector Spaces Intro

Lecture7.5: Subspaces, Columnspace, Rowspace, Nullspace

Lecture7.5: Subspaces, Columnspace, Rowspace, Nullspace

Lecture08: Null Space, Rank, Basis

Lecture08: Null Space, Rank, Basis

Lecture09: 4 fundamental subspaces & proof for dim(rowspace)=dim(colspace)

Lecture09: 4 fundamental subspaces & proof for dim(rowspace)=dim(colspace)

Lecture10: Orthogonality of 4-subpaces

Lecture10: Orthogonality of 4-subpaces

Lecture11: 4 subspaces & transformations + transformers

Lecture11: 4 subspaces & transformations + transformers

Lecture12: Projections & Subspaces

Lecture12: Projections & Subspaces

Lecture13: QR Decomposition, Least Squares, Gram-Schmidt

Lecture13: QR Decomposition, Least Squares, Gram-Schmidt

Lecture14: Determinants

Lecture14: Determinants

Lecture15: Eigenvalues, Eigenvectors, PS/D Matrices

Lecture15: Eigenvalues, Eigenvectors, PS/D Matrices